556

was generally found for case 1; the agreement for case 2 was not as
good, as seen in Fig. 4(b). In fact, for arbitrary values of L. (the
short-curcuit-to-varactor distance) case 2 is usually characterized
by better agreement between experimental data and (1) and (2),
than with the perturbation theory. In.general, the perturbation
theory predictions may be in error by as much as a factor of 2 for
case 2, while calculations based on (1) and (2) are within 20 percent.

Of great interest in design of a given cavity configuration is the
maximum available eleetronic tuning. This may be examined as the
parameter Af,, which is defined as the change in frequency cor-
responding to a change in varactor bias voltage from 4 to 45 V. This
quantity is plotted for case 1 in Fig. 2, and for case 2 in Fig. 3, both
as a functions of L,. Examining case 1, first we see that Af,, varies
considerably with L,. The peaks in Af,, occur where L, and L, are
both approximate multiples of A,/2 at the oscillation frequency.
Fig. 2 also shows several points calculated using the perturbation
theory, indicating good agreement with experiment.

Fig. 3 shows Af,, versus L, for case 2. One observes discontinuities
in the characteristics of both center frequency and Af, versus L,
these occur for L. values corresponding to A, and A,/2. At these
values of L, the calculations based on (1) and (2) show two distinet
resonances with relatively similar frequencies; the oscillator is
always observed to “jump’’ to the resonance with the higher Q.

The experimental curves were all taken with L, increasing; some
hysteresis is generally observed [3] when instead L, is decreasing.

CONCLUSION

It has been shown that an analytic model is available which
provides good predictions of electronic tuning for wide variations
in varactor voltage and oscillator dimensions. This includes Af,
and also Af as a function of varactor bias voltage. The theory ac-
curately predicts certain frequency jumps which are therefore
primarily due to the circuit elements as modeled.

The usual use of (1) and (2) for oscillator frequency prediction
has been augmented by use of the Slater perturbation theory with
good results.

APPENDIX

One may consider a cavity including regions of positive and nega-
tive conductivity representing varactor loss and negative dif-
ferential mobility, respectively. Then the conventional formulation
for the Slater perturbation theorem may be modified to give

/f (H X Ee* + Hy* X E)-dS

8

=/ ooE+ Ev* dr, +/ O'sE'Eu*de +]/ (w _wo)
v s 14

[eE-Ey* + pH-H*]dV +j/ wdeE -+ Ey* dV (7)
v

where S represents the surface of the resonant cavity including the
output port; V is the region surrounded by 8§ including the regions
7» and 75, representing the varactor and the transferred-electron
oscillator, respectively, where ¢, > 0 and . < 0.

For small perturbations, one assumes

E-Ef* ~| E,*
H-Hy ~| H, |?

and we have the oscillator output power given by

1
Py = —5/ (Hy X Eo* + Ho* X Eo)+dS
K]

while the power dissipated in the varactor is

1
Pv=54/-a'leo|2dTv.

The loaded @ is defined such that

1
QL=°~’<§/ [61E0|2+#IH0|2]dV)/(Po+Pv)- (8)
v
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The imaginary part of (7) together with (8) gives

— W 1
w__o = —w (6{5/ el E, |2 dTv})/ (PO +PV)QL' (9)
%) o

The varactor @ can be defined as

Qo =w(%f elEoPdrv)/Pv
v

so that (9) can be written as

dw _ 3 (PvQy) _ PyQy -1
@ (Po + Py)QL (Po + Py)Qr| °
For typical experimental parameters
PyQvy
—— K1
(Po + Pv)Qr.

and the electronic tuning is calculated using (4).
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Computation of the Impedance of an Infinitely Long
Helical Transmission Line by Numerical Methods

D. C. WYNN, STUDENT MEMBER, IEEE, AND
C. T. CARSON, SENIOR MEMBER, IEEE

Abstract—A numerical method is given for the determination of
the impedance of an infinitely long thin-wire helix. The propagation
constant of the current for zero tangential electric field is found
and used in a variational expression for impedance. Asymptotic
values of resistance versus pitch are compared with resistances of
infinitely long straight-wire antennas.

INTRODUCTION

Previous studies [27-[7] of the propagation of waves on helices
have been hindered by the complexity of the integrals occurring
in expressions for electric-field intensity and input impedance. It
has been necessary in the past to make many simplifying approxima-
tions from which it is possible to obtain much general information
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about the behavior of waves on helices. The sheath helix, tape helix,
and helical coordinate systems were all used to redesign the problem
to suit existing mathematical techniques, but solutions comprising
truncated Fourier series and modified Bessel functions often pre-
vent a physical understanding of the actual mechanism of wave
propagation.

This short paper describes the investigation of a technique for’

calculating the input impedance of an infinite helix of thin circular-
section wire. It is hoped that an analysis of the helix may help to
make it a more useful engineering component.

The equation which must be satisfied by a wave on an infinitely
long lossless helix is given and this applies a restriction to the wave-
propagation constant. An iterative process is used to determine the
allowable value of the propagation constant for any arbitrary fre-
quency. A single-term approximation to the current using the cal-
culated propagation constant is then substituted in a variational
expression for the impedance of the infinite helix.

THEORY

At a point distant s from an arbitrary origin, the tangential elec-
tric-field intensity E;(s) in the direction of the unit vector § due to
a, current 7 (s’) on the surface of an infinitely long helical conductor
at a point s’ is given by the following equation:

Eis) = =2 f “ [kzz(s')G(s',s)?-g
[52 —0

a i ’ ! ’
+% (a—s' I(s")G (s ,8))] ds’ (1)

where « is the angular frequency, ¢ is the permittivity, k = 2x/),
A is the free-space wavelength, G(s’,s) = exp [—jkr(s’,s) /4nr(s’,8)],
rt = a® 4+ 4b%sin? (K(s’ — 8))/2b + [K'(s" — s) T, a is the radius
of the helix wire, b is the radius of helix, p is the pitch of helix,
[1 + (p/27b)2 T2 K’ = [1 + (2xb/p)?T V% = [1 — K2Ji3
and §'+S = 1 ~ 2K?sin? (K (s’ — s)/2b). The thin-conductor ap-
proxnnatlon [87 has been used to derive (1).
For a traveling wave to exist on the helix, the current distribution
would be expected to take the form

Iy exp (jvs), —o <s’' <0
I(s") = )
Lyexp (—jvs'), 0<s < =,

The propagation constant v can be found for which I (s’) exists when

the left-hand side of (1) is equal to zero and s is sufficiently far away

from the origin to be unaffected by the voltage excitation at s = 0.
Substituting for current I (s’) in (1) and integrating by parts,

Bi(s) = wihﬂﬁmvﬂwa-go_Gy
0
— 9K? sin’%) + G +8) (1 _ (%>2

K& +a)\],, .

Equation (3) may be simplified by a change of variables to Z’ =
K's'/x and Z = K's/\ where Z' is the distance in free-space wave-
lengths along the axis of the helix and Z is the position of the ob-
servation point s measured along the axis and normalized to the
wavelength.

Equation (3) may now be written:

LK | . o B 2a(Z' — Z)
1, oo () 2

.ex {—52«[¥Z' + R(Z' — Z)]} iz
D R(Z — 7)

4 / [1 vy (%B) wos 272 +Z)]
. P

exp {—j27(¥Z" + R(Z' + Z)]} ¥ exp [—j21rR(Z)]}

— 2K? gin?

Ei(z) = —

R(Z' + Z) a7+ =R(Z)

(4)
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where A = a/\, B=b/\, P = p/M R =1/},

w(Z' + Z)
P

1/2
R(Z' +2) = [Az + 4B? sin? +(Z' + Z)Z]

¥ = v/kK’ is the ratio of propagation constant along the helix axis
to the propagation constant in free space, and ¢ is the free-space
propagation velocity.

Further simplification of (4) results in the following expression

E(Z) = — LK {j cos 27V 7 w[g -+ h cos gﬂ]
Ae " P
exp {—2«[¥Z' + R(Z))]} /’Z 2xZ’
R@) azZ | [g + h cos f2 ]
-sin 2% (Z' — Z) 3’?% az’
¥ exp [—f2xR(Z)]

+ 27R (Z) } ®)

whereg =1 — ¥2and h = (2«B/P):.

The asymptotic form of the expression in (5) as Z approaches
infinity is

—iLK’ - 27’
EiZ — o) = 2 lexp (—jzw\I/Z)/ g + h cos =
Che o P

exp [ —j2«R(Z") ]

-cos 2a¥Z’
€os 27 RZ)

dZ’} . (6

The allowable value of ¥ can be found by solving (6) such that its
left-hand side is equal to zero.

Both (5) and (6) can be manipulated into a form suitable for
numerical evalualion by use of the approximation

R(Z) =2  Z'>20B (7

with an error of less than 1 percent. For example, (6) becomes

1 1:4 208 277’
= T exp (—j21r\I’Z)/ g+h cos .
Che 0 P

exp [—j2=R(Z")]
R(Z"

E(Z — )

-cos 2wV 72’ az'

§ ® 2#Z'
+ exp (—j27x¥Z) f g + h cos
208 P

*Cos 272’

exp (—j2rZ") dZ’} i 8)

ZI

The integrand of the infinite integral can be expanded as a sum of
functions of the form [sin 2« (¥ = 1)2’]/Z’, [cos 2x (¥ £ 1)Z2')/Z’
and (sin 2o (¥ 1 & (1/P)Z']/Z’, [cos 2x (¥ = 1 &+ (1/P))Z'}/Z’
and the integral can be evaluated as a sum of sine and cosine integrals.

Input impedance can be obtained from the following variational
formula [9]

Zn="2 / " exp (—j2x¥Z)E((Z) dZ. ©

LK J,

DETAILS OF COMPUTATION

The adaptive numerical integration procedure halved the inte-
gration step each time that the difference between the two previous
approximations exceeded a certain error criterion. A small but
rapidly changing part of the integrand would require the further
uniform subdivision of the entire interval unless the integration were
performed in sections. Thus the weak singularity introduced by the
Green’s function at the source was removed and integrated sepa-
rately.

The integral to infinity in (8) was represented by a sum of sine
and cosine integrals which were evaluated either directly as trun-
cated summations or indirectly by means of rational polynomial ap-
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Fig. 4. Input resistance against helix pitch.

proximations, depending on whether their arguments were less than
or greater than unity.

Fig. 1(a) shows the electric-field to be unaffected by the source
at Z = 100, and (5) becomes a practical alternative to (6).for find-
ing ¥. The tangential electric-field mtensfcy of (5) was calculated
for a series of values of ¥ and the zero crossing of the imaginary part
of E: was detected either graphically or by using a programmed
method of false position. Fig. 1(b) illustrates the variation of
Im {E.} with ¥ at Z = 100.
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Fig. 5. (a) Ratio of propagatlon velocity alorig wire to free-space

velocity against helix pitch. (b) Ratio of propagation velocity along
helix axis to free-spate velocity against helix pitch.

Integration of the expression in (9) was carried out with a float-
ing upper limit which was increased until the value of the integral
oscillated with a sufficiently small amplitude about an asymptotic
mean value.

COMPUTATIONAL RESULTS

The lossless thin-wire helix used in the mathematical model had
the following geometrical dimensions: the radius of wire is 0.000075 m
and the radius of helix is 0.020000 m. All figures are self-explanatory
except that broken lines indicate quantities calculated for incorrect
values of propagation constant ratio ¥. For-very large values of
pitch, the curve of Fig. 4 tends to the input resistance of an in-
finitely lohg circular-section strajght-wire antenna as calculated by
Schelknuoff [1]. This asymptotic formula Has been obtained by
extending biconical transmission-line theory to cylindrical wires of
sufficiently small radius to support spherical waves.
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