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was generally found for case 1; the agreement for case 2 was not as

good, asseen in Fig. 4(b). In fact, forarbitrary values of L, (the
short-curcuit-to-varactor distance) case 2 is usually characterized

by better agreement between experimental data and (1) and (2),
than with the perturbation theory. Ingeneral, the perturbation
theory predictions maybe in error by as much as a factor of 2 for
case2, while calculations basedon (1) and (2) arewithin 20percent.

Of great interest in design of a given cavity configuration is the
maximum avaihible electronic tuning. This maybe examined as the

parameter A~~, which is defined as the change in frequency cor-
responding to a change in varactor bias voltage from 4 to 451’. Thw

quantity is plotted for case 1 in Fig. 2, and for case 2 in Fig. 3, both

as a functions of LZ. Examining case 1, first we see that Aj~ varies

considerably with Lt. The peaks in A~~ occur where L1 and LZ are

both approximate multiples of XO/2 at the oscillation frequency.

Fig. 2 also shows several points calculated using the perturbation
theory, indicating good agreement with experiment.

Fig. 3 shows A~~ versus L, for case 2. One observes discontinuities

in the characteristics of both center frequency and Afm versus LZ
these occur for Lj values correepondhg to A, and &/2. At these
values of LZ the calculations basedon (1) and (2) show two distinct
resonances with relatively similar frequenciw; the oscillator is

always observed to “jump” to the resonance with thehlgher Q.
The experimental curves were all taken with L1increasing; some

hysteresis is generally observed [3]when instead Lzis decreasing.

CONCLUSION

It has been shown that an analytic model is available which
provides good predictions of electronic tuning for wide variations

in varactor voltage and oscillator dimensions. This includes A~m
and also A~ as a function of varactor bias voltage. The theory ac-
curately predicts certain frequency jumps which are therefore
primarily due to the circuit elements as modeled.

The usual use of (1) and (2) for oscillator frequency prediction
has been augmented by use of the Slater perturbation theory with

good results.

APPENDIX

One may consider a cavity includhg regions of positive and nega-
tive conductivity representing varactor loss and negative dlf-

ferential mobility, respectively. Then the conventional formulation

for the Slater perturbation theorem may be modified to give

// (H X E,* + H,* x E) .dS’

s

/
.[eE. E,*+pH.H,*]dV+j o&E. E,*dV (7)

v

where S represents the surface of the resonant cavity including the
output port; V is the region surrounded by S including the regions

7, and T., remesentina the varactor and the transferred-electron
oscillator, ”respectively,-whereu. > 0 and u. < 0.

For small perturbations, one assumes

E-EO* z I EO ~Z

H-H,* c= I HO 1~

and we have the oscillator output power given by

PO=–!
2 J

(H, X E,’ + H,” X E,) .dS

5

while the power dissipated in the varactor is

Pv=:
/

uv I EO Izdrv.

The loaded Q is defined such that

u~L=@ ; #~l~012+x]Ho12]dV
)/

(P. + Pv) . (8)

Theimaginary part of (7) together with (8) gives

==-”t{:lv’’E”’’d})}(p”+“)
Thevaractor Q can be defined as

Qv=ti(;~v.lE012d,.)/pv

so that (9) can be written as

h

{

a(PvQv) ~ _

}

PVQV -’—=—
to (P, + PV)QL (P, + PV)Q. “

For typical experimental parameters

PVQV

(P, + PT)QL
<<1

and the electronic tuning is calculated using (4).
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Computation of the Impedance of an Infinitely Long

Helical Transmission Line by Numerical Methods

D. C. WYNN, STUDENT MEMBER, IEEE, AND

C. T. CARSON, SENIOR MEMBER, IEEE

Absfract—A numerical method is given for the determination of
the impedance of an infinitely long thin-wire helix. The propagation

constant of the current for zero tangential electric field is found

and used in a variational expression for impedance. Asymptotic
values of resistance versus pitch are compared with resistances of
infinitely long straight-wire antennas.

INTRODUCTION

Previous studies [2]–[7 ] of the propagation of waves on helices

have been hindered by the complexity of the integrals occurring
in expressions for electric-field intensity and input impedance. It
has been necessary in the past to make many simplifying approxima-
tions from which it is possible to obtain much general information
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about the behavior of waves onhelices. The sheath helix, tape helii,

and helical coordinate systems were all used to redesign the problem

to suit existimg mathematical techniques, but solutions comprising
truncated Fourier series and modified Bessel functions often pre-

vent a physical understandhg of the actual mechanism of wave

propagation.

This short paper describes the investigation of a technique for

calculatimz the immt immxiance of an infinite helix of thin circular-
section w~e. It i; hope~ that an analysis of the helii may help to
make it a more useful engineering component.

The equation which must be satisfied by a wave on an infinitely
long Iossless helii is given and th~ applies a restriction to the wave-
propagation constant. An iterative process is used to determine the

allowable value of the propagation constant for any arbitrary fre-

quency. A single-term approximation to the current using the cal-
culated propagation constant is then substituted in a variational
expression for the impedance of the infinite helii.

THEORY

At a point d~tants from an arbitrary origin, the tangential elec-
tric-field intensity E,(s) in the direction of the unit vector # due to

a current I (s’) on the surface of an infinitely long helical conductor
at a point s’ is given by the following equation:

E, (s) = ~
“/[

o k’I(s’)G(s’,s)#+
—.

where A = a/k, 13 = b/?t, P = p/h, R = r/h,

[
R(Z’ * Z) = Az + 4B2 sinz

%r(z’ + z)

P 1
112

+ (z’ *Z)’

~ = Y/lcK’ is the ratio of propagation constant along the helix axis
to the propagation constant in free space, and c is the fre~space
propagation velocity.

Further simplification of (4) resulb in the following expression

‘:{,cos2.wzf[g+ hcosy]E,(Z) = - —

exp { –.j2m[vZ’ + R (Z’)]) ~z, _ z

/[

2UZ’”
.—

R(Z’)
g+hcos —

0 P

exp [ –j2rR (Z’) ] ~z,
*sin 2r~! (Z’ — Z)

R (Z’)

+ V exp [–j2di (Z)]

2uR (Z) }
(5)

where g = 1 — *2 and h = (2 TB/P)2.
The asymptotic form of the expression in (5) as Z approaches

infinity is,

(+~:,I (s’) G(s’,s)
)1

ds’ (1) – jIOK’

{ /[

m
E,(Z+ m) .——

21rz’
exp ( –j2#Z) g+hcos —

eke 0 P 1
where ~ is the angular frequency, e is the permittivity, k = 2m/A,
A is the free-space wavelength, G(s’,s) = exp [ –jkr(s’,s)/4rr( s’,s)],
~2 = a2 + @ s.n2 (K(~~ _ s)) /zb + [~~ (8? — s) ]2, ~ is the radius

of the helix wire, b is the radius of helii, p is the pitch of helix,
K = [1 + (p/2~b)t]-l/~, K’ = [1 + (2rb/p)Z]-l/j = [1 – IP]112,

and @.? = 1 - 2K2 sinz (K (s’ — s) /2b). The thin-conductor ap-
proximation [8 ~ has been used to derive (1).

For a traveling wave to exist on the helix, the current distribution
would be expected to take the form

Ioexp (jTs’), – M < s’ s O
I(s’) = (2)

10 exp ( –jys’), O<s’ <m’.

The propagation constant y can be found for which I (s’) exists when

the left-hand side of (1) is equal to zero ands is sufficiently far away

from the origin to be unaffected by the voltage excitation at s = O.

Substituting for current I (s’) in (1) and integrating by parts,

{/
E*(s) = –j? k’ M

we o

exp(-jhst)~(st-s)~-(~~

K(s’ – S)
– 2K~ sin~ Zb

) ( ()
+G(s’+s) 1– ~’

h?

– 2K~ sint
K(s’ + S)

2b )1 }ds’ – j2&(s) . (3)

Equation (3) may be simplified by a change of variables to Z’ =

K’s’/h and Z = K’.s/k where Z’ is the distance in free-space wave-
lengths along the axis of the helii and Z is the position of the ob-

servation point s measured along the axis and normalized to the
wavelength.

Equation (3) may now be written:

E, (2) = – ~{~~m[l-v+~;)cosz”(z;-z’]

.exp{–j27iw-7 + E(Z’ – -z) 11~z,
It(z’ –z)

“ 1“’[1-w2+(acos2”(z:z)l
.exp ( –j2@Z’ + R(Z’ + Z)]) ~z, + w exp [ –j27rR(Z)]

R(Z’ + Z) rR (Z) 1

(4)

.CosZmwz,exp [ –j2rR (Z’) ] ~z,

R(Z’) }
. (6)

The allowable value of w can be found by solving (6) such that its
lefbhand side is equal to zero.

Both (5) and (6) can be manipulated into a form suitable for
numerical evaluation by use of the approximation

R(Z’) = Z’ Z’ > 20B (7)

with an error of less than 1 percent. For example, (6) becomes

–jI,K’

{ /[

20B
E,(Z4 m) = ——

2?rz’”
exp ( –j2A?Z)

CA6
g+hcos —

0
P

. ~os Zrwz, exp [ –j2rR (Z’) ] ~z,

R (Z’)

/[
+ exp ( –j2~VZ) m

27rz’
~o~ g+hcos —

P 1.~)osZmwz,exp ( —j27rZ’)
dZ’

z’ }
(8)

The integrand of the infinite integral can be expanded as a sum of

functions of the form [sin 27r (V + 1)2’]/2’, [COS 27r (V + 1)2’]/2’

and [sin 27r(w + 1 + (1/P) Z’]/Z’, [COS 2Z(V + 1 + (l/P) )2’]/2’
and the integral can be evaluated as a sum of sine and cosine integrals.

Input impedance can be obtained from the following variational
formula [9]

–2h ==
Zim = —

/I,K’ o
exp ( –j2rvZ)E~ (Z) dZ. (9)

DETAILS OF COMPUTATION

The adaptive numerical integration procedure halved the inte-

gration step each time that the difference between the two previous.,
aPP.roxlmatlOn.s exceeded a certain error criterion. A small but

rapidly changing part of the integrand would require the further

uniform subdivision of the entire interval unless the integration were

performed in see tions. Thus the weak singularity introduced by the

Green’s function at the source was removed and integrated sepa-

rately.

The integral to infinity in (8) was represented by a sum of sine

and cosine integrals which were evaluated either dh-ectly as trun-

cated summations or indirectly by means of rational polynomial ap-
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Fig. 1. (a) Modulus of tangential electric field against wavelength-
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proximations, depending onwhether their arguments were less than
or great@ tha,n unity.

Fig. l(a) shows the electric-field to beunaffected,by the source

atZ = 100, and (5) becomes apractical alternative to (6). for find-
ing t?. The tangential electric-field intensity of (5) was calculated

for a series of values of w and the zero crossing of the imaginary part
of Et was detected either graphically or by using a programmed

method of false position. Fig. l(b) illustrates the variation of
Im{E,)with Vat Z= 100.
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Fig. 5. (a) Ratio of propagation velocity, along wire to free-space
velocity against .hellx pitch. (b) Ratio of propagation velocity along
helix axis to free-spake velocity against helix pitch.

Integration of theexpressioniri (9) was carkedout with afloat-
ing upper limit which was increased until the value of the integral

oscillated with a sufficiently small amplitude about an asymptotic
mean value.

COMFIUTATIONAL RESULTS

Theloi+dess thin-wire helix used in the mathematical model had
the following geometrical dimensions: the radiizs of wire is 0.000075 m

and the radius of helix is 0.020000rn. All figures areself:explanatory
except that broke n.lihes indicate quantities calculated for incorrect

values of propagation constant ratio, ~. Forvery large tialties of
pitch, the curve of Fig.:4 tends to the input resistance of an in-

finitely long circular-section straight-wire antenna as calculatedly
Schelknuoff [1]. This asymptotic formula has been obtained by

extending biconical transrnission:line theory to cylindrical wires of

sufficiently small radius to support spherical waves.
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